MEASURING THE SPEED OF NEUTRINOS WITH MINOS
June, 2012
MEASURING NEUTRINO TIME OF FLIGHT

- Measure the time it takes for NuMI neutrinos to travel the $734,286.2 \pm 0.5$ m between the two MINOS detectors.

- Initial result after first year of data indicated neutrinos arrived at FD earlier than expected:
 \[126 \pm 32 \text{ (stat.)} \pm 64 \text{ (syst.) ns}^+\]

- We revisit this analysis with a factor of 8 more events and a refined systematic error analysis.

Major Systematic Uncertainties

- Arrival times as recorded at each detector must be corrected for (sizeable) cable delays and electronics latencies.
- Dominant systematics in first analysis largely mitigated by new, precision measurements of delays.

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS antenna to ND cable delay</td>
<td>1275 ± 29 ns</td>
<td>1309 ± 1 ns</td>
</tr>
<tr>
<td>GPS antenna to FD cable delay</td>
<td>5140 ± 46 ns</td>
<td>5098 ± 2 ns</td>
</tr>
</tbody>
</table>

- Relative ND/FD electronics latencies determined using a special purpose Auxiliary Detector.
- Total systematic from cable delay/electronic latency: 4 ns
THE AUXILIARY DETECTORS (AD)

- Scintillator paddles with PMTs
- Two independent readouts
 - CAMAC TDC
 - Brilliant Instruments TDC
- Match muons in MINOS detectors with muons crossing AD
- Difference in matched event times recorded in each device measures latency in neutrino detector relative to AD latency
- Compare Near to Far Detector latencies, AD latency cancels
- Relative latency measured to 1 ns precision
Timing System Stability

- Recent measurements of the MINOS GPS receivers against cesium clocks reveal GPS time discontinuities after power cycles.
- Measured 60 ns jitter within manufacturer spec.
- Neutrino arrival times recorded over past 7 years includes these random jumps:
 - stable between power cycles
 - average over many power cycles cancels the effect of this random jitter.
ADDITIONAL SYSTEMATIC UNCERTAINTIES

- Calibrating ND/FD GPS receiver offsets
 - Traveling TWSTT capable GPS receiver visited FNAL and Soudan
 - TWSTT (Two Way Satellite Time Transfer)
 - Two receivers exchange timing synchronization information via the satellite
 - Comparison of ND and FD GPS time to traveling receiver reveals mean time offset between ND and FD: 22 ± 21 ns

- ND Spill trigger delay
 - Delay between beam extraction signal and issue of ND beam trigger is bimodal
 - Incur systematic uncertainty of 19 ns
THE ANALYSES

- NuMI neutrinos span a 10 us spill
 - spill subdivided into 1.619 us batches
 - 95 ns gap between batches
- Full spill approach
 - Use event time within spill distribution in ND to predict FD distribution
 - Vary time of flight to match prediction to data
- Wrapped Spill approach
 - Measure event time within batch
 - Find time of the gap between batches in each detector
 - Subtract gap times to find time of flight
Comparing the Approaches

- Divide data set into subsets between timing system power cycles
- Two approaches give consistent results in each time period
- Individual results change with power cycles
- Average over individual results for final TOF result
- Error on mean taken as the statistical error on the result
RESULTS

- In Full Spill approach, neutrinos arrive earlier than expected by:
 \[18 \pm 11 \text{ (stat.)} \pm 29 \text{ (syst.)} \text{ ns} \]
- In Wrapped Spill approach, neutrinos arrive earlier than expected by:
 \[11 \pm 11 \text{ (stat.)} \pm 29 \text{ (syst.)} \text{ ns} \]
- The two approaches give results consistent with one another
- The two results are consistent with neutrinos traveling at the speed of light