
Tips on Using GDB to Track Down and Stamp Out
Software Bugs

Brett Viren

Physics Department

MINOS Week In The Woods, 2005

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 1 / 34

Outline

1 Compiling for Debugging

2 Running GDB

3 Interrogating and Exploring a Program in GDB

4 Controlling Program Execution

5 Stepping Through the Execution

6 Dealing with Dynamically Loaded Libraries

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 2 / 34

Compiling for Debugging

1 Compiling for Debugging
Generic Compilation
Compiling ROOT
Compiling MinosSoft

2 Running GDB

3 Interrogating and Exploring a Program in GDB

4 Controlling Program Execution

5 Stepping Through the Execution

6 Dealing with Dynamically Loaded Libraries

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 3 / 34

Compiling for Debugging Generic Compilation

Compiling code for easier debugging.

GDB needs extra information in the object code in order to provide most
of its features. This is added with GCC’s -g flag.

shell$ g++ -ggdb [-O] file.cxx ...

Note:

Using -ggdb will provide the best information for GDB. Using -g
alone will use the OS’s native format (which can be equivalent).

One can optionally still keep optimization on (-O2) but the generated
code may be very confusing when investigated in GDB. Variables can
be optimized away, branches can execute out-of-order, etc.

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 4 / 34

Compiling for Debugging Compiling ROOT

Compiling ROOT with Debugging Symbols

ROOT’s build system uses the ROOTBUILD environment variable to control
whether or not debugging symbols are added to the libraries:

shell$ make ROOTBUILD=debug

The actual debug flags are just “-g” but can be changed by editing the
DEBUGFLAGS variable at the top of

root/config/Makefile.linux.

Debug and optimization are mutually exclusive in ROOT’s build system, if
both are desired, this file will need editing.

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 5 / 34

Compiling for Debugging Compiling MinosSoft

Compiling MinosSoft with Debugging Symbols

By default MinosSoft’s SRT will use debugging with just “-g” so there is
nothing special needed to produce libraries with debugging symbols.
To produce both optimized and debug libraries set the environment
variable

bash$ export SRT QUAL="debug maxopt"

tcsh$ setenv SRT QUAL "debug maxopt"

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 6 / 34

Running GDB

1 Compiling for Debugging

2 Running GDB
Staring the Process with GDB
Using a “core” File
Attaching to a Running Process
Caveats

3 Interrogating and Exploring a Program in GDB

4 Controlling Program Execution

5 Stepping Through the Execution

6 Dealing with Dynamically Loaded Libraries

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 7 / 34

Running GDB Staring the Process with GDB

Start the Process with GDB

Two ways to pass in command line arguments, from inside GDB:

shell$ gdb program

(gdb) run arg1 arg2
Starting program: /path/to/program ...

or from the shell:

shell$ gdb --args program arg1 arg2 ...

(gdb) run
Starting program: /path/to/program ...

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 9 / 34

Running GDB Using a “core” File

Postmortem with a “core” file

A core file holds an image of the program’s memory at the time of the
crash. To be produced your environment must be properly set:

bash$ ulimit -c unlimited

tcsh$ limit coredumpsize unlimited

GDB can attach to the core file along with the program like:

shell$ gdb program core

GDB will position itself at the point where execution crashed.

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 10 / 34

Running GDB Attaching to a Running Process

Connecting to a process that is already running

This can be useful if you suspect the program is in an infinite loop, or
catch the program after all libraries are loaded (but see below for other
ways).

shell$ gdb program PID

Where PID is the running process’s ID. GDB will halt the process and will
position itself where the process was just executing.

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 11 / 34

Running GDB Caveats

Caveat About Running root with GDB

The root executable is a small program that just handles a few things like
printing a help message or showing the graphical ROOT “splash” screen.
It calls exec to start the root.exe program which then does the heavy
lifting. This exec can confuse GDB so when debugging “ROOT”, do:

shell$ gdb root.exe ...

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 12 / 34

Running GDB Caveats

Caveat About Running GDB under tcsh

GDB will run the program under your shell but only if the SHELL
environment variable is correctly set. The tcsh shell does not always set
this variable. It can be set like:

tcsh$ setenv SHELL /usr/bin/tcsh

If this variable is left unset, /bin/sh is used.

Or better yet, switch to bash....

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 13 / 34

Interrogating and Exploring a Program in GDB

1 Compiling for Debugging

2 Running GDB

3 Interrogating and Exploring a Program in GDB
Sample Program
Examining the Execution Stack and Variable Values
Traversing the Stack

4 Controlling Program Execution

5 Stepping Through the Execution

6 Dealing with Dynamically Loaded Libraries

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 14 / 34

Interrogating and Exploring a Program in GDB Sample Program

Simple Test Program

1 vo id func2 (i n t ∗p)
2 {
3 i n t i = ∗p ;
4 }
5 vo id func1 (i n t ∗ p)
6 {
7 func2 (p) ;
8 }
9 vo id func0 (i n t∗&p)

10 {
11 p = new i n t ;
12 func1 (p) ;
13 de le te p ;
14 p = 0 ;
15 }
16 i n t main (i n t argc , char ∗ a rgv [])
17 {
18 i n t ∗ p=0;
19 func0 (p) ;
20 func1 (p) ;
21 re tu rn 0 ;
22 }

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 16 / 34

Interrogating and Exploring a Program in GDB Examining the Execution Stack and Variable Values

Where am I and how did I get here?

When GDB runs a program and stops either due to a crash or an interupt
it is positioned somewhere in the function call stack. You can see where
with the backtrace (aka bt, where):

(gdb) backtrace
#0 0x0804838d in func2(int*) (p=0x0) at crash.cc:3
#1 0x080483a5 in func1(int*) (p=0x0) at crash.cc:7
#2 0x080483ca in main (argc=1, argv=0xbffffae4) at crash.cc:20

This shows main called func1 which called func2. The function argument
types and values are printed as are their file and line numbers. If this info
is missing it means the code was not compiled with debugging turned on.

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 18 / 34

Interrogating and Exploring a Program in GDB Examining the Execution Stack and Variable Values

What is here?

Show the source code coresponding to the current execution point:

(gdb) list
20 func1(p);
21 return 0;
22 }
}

Check values of variables:

(gdb) print p
$1 = (int *) 0x0

The type and value are printed. The $1 is now a variable that can be used
later.

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 20 / 34

Interrogating and Exploring a Program in GDB Traversing the Stack

Going elsewhere.

You can go up and down the call stack with the up and down commands.
This helps get to the real root cause:

(gdb) up
#1 0x080483a5 in func1(int*) (p=0x0) at crash.cc:7
7 func2(p);

(gdb) up
#2 0x080483ca in main (argc=1, argv=0xbffffae4) at crash.cc:12
20 func1(p);

We could also have jumped to that frame via frame 2 command. If the
frame is not specified the current one will be printed.

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 22 / 34

Controlling Program Execution

1 Compiling for Debugging

2 Running GDB

3 Interrogating and Exploring a Program in GDB

4 Controlling Program Execution
Stopping Execution with Break Points
Watch Points

5 Stepping Through the Execution

6 Dealing with Dynamically Loaded Libraries

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 23 / 34

Controlling Program Execution Stopping Execution with Break Points

Setting Break Points

Break points tell GDB to stop execution at some point in the program.
⇒ Break when named function is run:

(gdb) break func1
Breakpoint 1 at 0x804839a: file crash.cc, line 7.

(gdb) run
Breakpoint 1, func1(int*) (p=0x0) at crash.cc:7
7 func2(p);

⇒ Break at file:line

(gdb) break crash.cc:11
Breakpoint 2 at 0x8048384: file crash.cc, line 11.

(gdb) run
Breakpoint 2, func0(int*&) (p=@0xbffffa24) at crash.cc:11
11 p = new int;

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 25 / 34

Controlling Program Execution Stopping Execution with Break Points

Caveats with Break Points

There are some things to keep in mind about break points.

1 The code must be linked (see below)

2 When breaking in a class method, the full name, including arguments,
must be used. It helps to put the partial name in single quotes and
hit tab:
(gdb) break ’JobCModule::An<TAB>’

(gdb) break ’JobCModule::Ana(MomNavigator const*)’

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 26 / 34

Controlling Program Execution Watch Points

Setting Watch Points
Setting a watch point will cause GDB to halt execution when some
expression changes.

(gdb) break main
Breakpoint 5 at 0x804850a: file crash.cc, line 18.

(gdb) run
Breakpoint 5, main (argc=1, argv=0xbffffa84) at crash.cc:18
18 int* p=0;

(gdb) watch p
Hardware watchpoint 6: p

(gdb) continue
Continuing.
Hardware watchpoint 6: p
Old value = (int *) 0xbffffa84
New value = (int *) 0x8049830
func0(int*&) (p=@0xbffffa24) at crash.cc:12
12 func1(p);

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 28 / 34

Controlling Program Execution Watch Points

Watch Points Caveats

Hardware Watchpoints are handled by the CPU directly and thus incur
almost no slowdown. They are limited in number and in the
amount of memory they can watch.

Software Watchpoints are handled by GDB and don’t have the limitation
of those in hardware. However they will slow down the
execution of the program by orders of magnitude. This
makes them essentially unusable.

Sometimes setting a watch point on a class member is difficult. Here is a
tip from Mike Kordosky;

(gdb) print fConst
$40 = (double*) 0xdcf6260

(gdb) print &fConst
$20 = (double**) 0xb960578

(gdb) awatch *0xdcf6260

(gdb) awatch *0xb960578

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 30 / 34

Stepping Through the Execution

Controlling Execution

Once execution has been broken there are a number of ways to control it.

step or s step to the next executable statement. This lets one step
into a function call.

next or n step to the next executable statement in current frame. This
avoids stepping into a function call.

continue or c continue to the next break or watch point or until the
program execution is terminated.

delete or d delete all break and watch points. Given an optional number,
delete just that point.

Hitting ENTER repeats the last command.

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 31 / 34

Dealing with Dynamically Loaded Libraries

1 Compiling for Debugging

2 Running GDB

3 Interrogating and Exploring a Program in GDB

4 Controlling Program Execution

5 Stepping Through the Execution

6 Dealing with Dynamically Loaded Libraries
Dynamically Loaded Libraries

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 32 / 34

Dealing with Dynamically Loaded Libraries Dynamically Loaded Libraries

Handling Dynamically Loaded Libraries

Before code in a library can be accessed by GDB, it must be linked into
the running process. However, much of ROOT’s and MinosSoft’s libraries
are linked after running. There are various ways to handle this:

1 Set a break in main, run and then break by file:line.

2 Set a break in main, run, break in JobCPath::Run and continue.
At next stop, any libraries loaded in the job macro should be available.

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 33 / 34

Appendix For Further Reading

For Further Reading I

GDB manual. On the web at:
http://www.gnu.org/software/gdb/documentation/

Two GUI GDB frontends:
I GVD, http://libre.act-europe.fr/gvd/
I DDD, http://www.gnu.org/software/ddd/

For fun: TCSH considered harmfull,
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Brett Viren (Brookhaven National Lab) Using GDB to Debug Ely 2005 34 / 34

http://www.gnu.org/software/gdb/documentation/
http://libre.act-europe.fr/gvd/
http://www.gnu.org/software/ddd/
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

	Compiling for Debugging
	Generic Compilation
	Compiling ROOT
	Compiling MinosSoft

	Running GDB
	Staring the Process with GDB
	Using a ``core'' File
	Attaching to a Running Process
	Caveats

	Interrogating and Exploring a Program in GDB
	Sample Program
	Examining the Execution Stack and Variable Values
	Traversing the Stack

	Controlling Program Execution
	Stopping Execution with Break Points
	Watch Points

	Stepping Through the Execution
	Dealing with Dynamically Loaded Libraries
	Dynamically Loaded Libraries

	Appendix
	For Further Reading

