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| ntroduction

A proposed NuMI hadron beam absorber core, intended for side installation, consists of
nine water-cooled aluminum modules, 1.32 x 1.32 x 0.31 metersin size. This design was
analyzed by IHEP (Abramov, A., et. a., “ Advanced Conceptual Design of the NuM|
Hadron Beam Absorber Core’, NuMi-B-652, June 30, 2000). In that analysis operation
of the absorber under the fault condition was limited to sixteen pulses. Current design
criteriarequire that the absorber operate for one hour (approximately 1800 pulses) under
the fault condition.

A MARS analysis performed by A. Wehmann shows that the fourth modul e absorbs the
greatest energy, dissipating 58.5 kW. The detailed distribution was tabulated and made
available to an ANSY S model, which was then used for the thermal and structural
anaysis.

Summary

The maximum temperature reached by the absorber after 1800 pulsesis 370 deg C. The
maximum stress intensity is 210 Mpa (30.5 ksi). This stress occursin the 25 deg C region
near the cooling pipe, where the full room-temperature yield strength of 241 Mpais
available.

A volume of 0.021 m® (0.75 ft%) yields plastically in excess of 0.2%. The maximum
plastic strain is 0.7%. Thereis no evidence of thermal ratcheting.

The maximum displacement due to thermal expansion is vertical (coreisassumed to be
sitting on its lower surface), and is 3 mm.

M aterial Propertiesfor the Analysis

The properties of 6061-T6 aluminum were taken from the Metals Handbook, VVolume 2,
“Properties and Selection: Nonferrous Alloys and Pure Metals’. Two of these properties,
specific heat and thermal conductivity, are substantially lower than those used in the
previous FEA of the aluminum baffle.


wehmann
The number of water-cooled aluminum modules is 8.  At one time we considered having a water-cooled steel module following those 8 & this may be why Bob says nine here.


The physical properties are given in Table |. The mechanical properties aregivenin
Tablell. The stress-strain curve of Table Il isplottedin Fig. 1.

Tablel. Physical Properties of 6061-T6 Aluminum

Property Value

Thermal 167 W/m-C
Conductivity
Specific Heat 896 J/kg -C

Density 2700 kg/m®
Thermal 2.36e-5 m/m-C
Expansion

Tablell. Mechanical Propertiesof 6061-T6 Aluminum

Temperature | Yield Stress Y oung's Modulus
W®) (Mpa) (Gpa)
38 241 70.4
66 238 70.0
93 232 69.2
121 223 68.1
149 189 66.7
177 138 65.0
204 92 63.0
260 34 58.0
316 19 51.8
371 12 44.4
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Absorber Core Geometry

The absorber core geometry was taken from the technical paper “ Advanced Conceptual
Design of the NuMI Hadron Beam Absorber Core”, NuMI-B-652, June 30, 2000.

The geometry isshown in Fig. 3.
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Figure 3. Absorber Core Geometry



Finite Element M odel

One-half of the absorber core was modeled with 20-node brick elements. For the thermal
analysis, the nodes corresponding to the cooling pipe elements were constrained to a
temperature of 25 C . No convective surface cooling was assumed. For the structural
analysis, symmetry constraints were applied at the vertical cut, and support was provided
in the vertical direction over the entire bottom surface. Gravity was applied to account for
core dead weight.

Figure 4. Finite Element Model



Heat generations were input from a table generated by A. Wehmann. The input was
checked against internal energy calculations, where the total energy E was defined as the
sum of the individual finite element energies, based on an initial temperature of 25 C:

E= Ii PCVAT,

i=1

where p = mass density
Cp = specific heat
Vi = volume of element i
AT; = temperature rise of element |
N = number of elementsin model

This summation was made after the 10 psec pulse. A different method was aso used, in
which the model was run at a steady-state heat generation, and the heat flow into the
constrained nodes was summed.

Both methods agreed with the input to within 2.5%, verifying correct implementation of
the heat load.

Thermal Analysis Results - 1800 Pulses

The maximum core temperature as a function of timeis shown in Fig. 5. After 1800
pulses (3420 sec) the core temperature is 368 deg C.

Fig. 6 shows the distribution of temperature at the end of 1800 pul ses.

Included in the figure are two alternate cooling pipe geometries, in which the pipeis
moved closer to the center of the absorber. While such close proximity is possible, the
demands put on the heat transfer to the cooling fluid are greater due to the shorter cooling
pipe length and higher temperature gradient.

The following stress and displacement results are based on the original 0.1 m cooling
pipe geometry.
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Figure 6. Temperature Distribution after 1800 Pulses




Stress Analysis Results

The stress analysis was performed for five temperature excursions between the maximum
temperatures obtained at the end of the 1800™ pulse, and the 1800™ rest period. These
distributions differ by only afew degrees, and for this reason, there appears to be no
discernible thermal ratcheting. Unlike the baffle, which produced large dropsin
temperature between pul ses, the absorber core’s much smaller temperature drop doesn’t
give the necessary conflict of compressive and tensile stresses necessary to cause any
systematic growth due to thermal distortion.

The high temperatures of the core, and the attendant loss of yield strength produce alarge
volume of plastically strained material. The red elementsin Fig. 7 show theregionin
which plastic strains exceed 0.2% (the standard permanent offset used to define the yield
strength of amaterial.)

The maximum plastic strain is slightly over 1%.

Figs 8-11 show the stresses in the absorber. For these figures, the core was sectioned in
the plane of the water cooling pipe.
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Figure7. Plasticity in Absorber after 1800 pulses
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Figure 8. Stress I ntensity — 1800 pulses
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Figure 9. Horizontal (x) Stress— 1800 pulses
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Figure 10. Vertical (y) Stress— 1800 pulses
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Figure 11. Axial (z) Stress— 1800 pulses



The displacements of the core are shown in Figs 12-14.
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Figure 12. Horizontal (x) displacement of Core— 1800 pulses
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Figure 13. Vertical (y) displacement of Core— 1800 pulses
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Figure 14. Axial Displacement of Core— 1800 pulses

Conclusion

The absorber as currently conceived is capable of enduring one hour of continuous
operation in the fault condition. Plastic strains are moderate (a maximum of about 1%),

and stresses, while highest in the low-temperature regions (aresult of their resistance to

the pressures produced at the center asit heats and swells), are admissible, being below

the material yield stress. Thermal stress design philosophy would allow such stresses to

substantially exceed the yield stress, in the absence of thermal ratcheting. No thermal
ratcheting was found in this analysis.

The absorber is currently being re-designed to account for changes in the installation and

replacement conditions; the experimental area has been reduced in size sufficiently to
preclude the side installation for which these absorbers were intended.
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